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Abstract
In the classical team-formation problem the goal is to iden-
tify a team of experts such that the skills of these experts
cover all the skills required by a given task. In this paper,
we deviate from this setting and propose a variant of the
classical problem in which we aim to cover the skills of ev-
ery task as well as possible, while also trying to minimize
the maximum workload among the experts. Instead of set-
ting the coverage constraint and minimizing the maximum
load, we combine these two objectives into one. We call the
corresponding assignment problem the Balanced Cover-
age problem, and show that it is NP-hard. We note that
the objective function, which may also take negative values,
does not allow us to design approximation algorithms with
multiplicative guarantees. Consequently, we adopt a weaker
notion of approximation and we show that under this notion
we can design a polynomial-time approximation algorithm
with provable guarantees. We also describe a set of com-
putational speedups that we can apply to the algorithm to
make it scale for reasonably large datasets. From the prac-
tical point of view, we demonstrate how the nature of the
objective function allows us to efficiently tune the two parts
of the objective and tailor their importance to a particular
application. Our experiments with a variety of real datasets
demonstrate the utility of our problem formulation as well
as the efficacy and efficiency of our algorithm in practice.

1 Introduction

The abundance of online and offline labor markets (e.g.,
Amazon mechanical turks, Guru, Freelancer, online
scientific collaborations etc.) has motivated a lot of
work on team formation.

Most of the existing work in team formation takes
as input a task (or a collection of tasks) that requires a
set of skills and a set of experts, where each expert also
has a set of skills. Then the goal is to identify one team
for every task, such that for every skill of the task there
is at least one member of the team that has it. Thus,
the majority of the work on team formation requires
complete coverage of the skills of the input tasks [1,
2, 3, 7, 12, 10, 11, 13, 17, 14, 16, 15, 23, 25]. Their
differences lie in the way they define the “goodness” of a
team. For example, in some cases they optimize for the
communication cost, while in other cases they optimize
for the load of the experts or their compensation cost.

In this paper, we deviate from this complete-
coverage framework and we propose a team-formation
problem where the goal is to assign experts to a set of
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input tasks such that the task coverage is maximized,
and at the same time, the maximum load among the
experts used is minimized. This trade-off suggests that
we need not always cover the skills of every task com-
pletely, since covering a large fraction of their required
skills might yield a better result. Also, given that over-
worked experts do not perform well, we penalize ex-
pert overloading by minimizing the maximum number
of tasks assigned to an expert. Therefore, for an assign-
ment A of experts to tasks, our goal is to maximize the
combined objective:

(1.1) F (A) = C(A)− Lmax(A),

where C(A) is the sum of the fraction of the skills
of the tasks being covered by their assigned experts
and Lmax(A) is the maximum number of tasks assigned
to a single expert. We call this problem Balanced
Coverage and we show that it is NP-hard.

From the application point of view, the Balanced
Coverage problem makes sense because often skills
in tasks are repetitive. For example, consider a task re-
quiring skills: advertising, internet advertising, facebook
advertising, online marketing, social network platforms.
Clearly, these are repetitive and not all of them need to
be covered. Additionally, minimizing the maximum ex-
pert workload is desirable for better team performance.

Although we show that the two terms of the objec-
tive (Eq. (1.1)) are comparable, we believe that there
may be applications where coverage is more important
than maximum load or vice versa. Thus, we expand our
framework by introducing a balancing coefficient which
enables an effective tuning of the importance of the two
parts of the objective.

From the algorithmic point of view, optimizing the
above objective is challenging; the function itself may
take negative values. Therefore, it does not admit multi-
plicative approximation guarantees. Although the cov-
erage part of the objective (C()) is a monotone submod-
ular function, the maximum load part does not have a
predictable form (i.e., it is not linear or convex). There-
fore, existing techniques [9, 19], which have been devel-
oped recently, cannot be applied. However, we adopt
from these works a weaker notion of approximation and
aim to find an assignment A such that:

(1.2) C(A)− Lmax(A) ≥ αC(OPT)− Lmax(OPT),
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where OPT is the optimal solution to the Balanced
Coverage problem. In this case, α ≤ 1 is an
approximation guarantee that better fits functions like
ours. In this paper, we show that we can design a
polynomial-time algorithm with α = (1− 1/e), which
is probably the best we can hope for our objective
given that the C() is monotone and submodular. We
also show that our algorithm admits a lot of practical
speedups, which are a consequence of the structure of
our objective function.

Our experimental results demonstrate that our al-
gorithm is practical in terms of its running time and
outputs assignments with high total task coverage and
very low maximum load. Comparisons with a number
of baselines inspired by existing works show that our
algorithm consistently outperforms them.

There is some other recent work that also formal-
izes the team formation problem with partial cover-
ages [8, 21, 22]. We discuss in detail the relationship
between these works and ours in Section 2. The take-
away message of this discussion is that although these
works consider partial coverage, their setting and their
objectives are significantly different from ours and thus
we cannot use their algorithms to solve our problem.

2 Related Work

In this section, we highlight some related work in team
formation and discuss its relationship to our problem
and the algorithmic techniques we propose in this paper.

Team formation with complete task coverage:
The majority of the work in team formation assumes
that there is a single task, or a collection of tasks,
which require a set of skills. Additionally there are
experts who possess a subset of skills. The goal
is to identify a “good” subset of the experts that
collectively cover all the skills required by the task –
or each task of the collection. In the majority of the
research[1, 2, 3, 7, 12, 10, 11, 13, 17, 14, 16, 15, 23, 25],
the requirement that all skills of the tasks are covered
is a hard constraint. Different problem formulations
arise from the different definitions of the “goodness” of
a team (i.e., small communication cost, small maximum
workload etc.).

Among the works that require that all skills of the
input tasks need to be covered, the most related to ours
is the work by Anagnostopoulos et al. [1]. They con-
sider multiple tasks and multiple experts; every task
has a set of required skills and every expert also has
a set of skills. Their goal is to assign experts to tasks
so that every task is completely covered by the skills of
the experts assigned to it, while minimizing the maxi-
mum workload among the experts. They consider both
the offline and the online version of this problem. The

main difference between this setting and ours is that
we consider a combined objective of maximizing cov-
erage and minimizing maximum workload. Thus, the
complete coverage of the tasks is not a strict constraint
for us. Also, their problem is a minimization problem,
while ours is a maximization problem. Therefore, the
algorithmic techniques we develop in order to solve our
problem are different from the ones they use.

Team formation with partial task coverage: More
recently there has been some work, which similar to
ours, focuses on partial task coverage. In this case,
the goal is to cover as many skills of the input task
while also trying to accommodate some other objec-
tive [8, 21, 22]. For example, the work of Dorn and
Dustar [8] balances coverage with the team’s communi-
cation cost on a graph. In our setting we have no graph
and therefore their techniques are orthogonal to ours.
The more recent work of Nikolakaki et al. [22] balances
coverage of a single task with the total cost of experts,
i.e., the summation of their weights (e.g., salaries). Our
framework examines team formation for multiple tasks
and minimizes the maximum workload of the experts.
Although we adopt the same approximation framework
adopted by Nikolakaki et al. [22], our objective is dif-
ferent and thus leads to different algorithmic techniques
for solving our problem.

Also related is the work of Nikolakaki et al. [21].
Similar to the problem we study here, that work also
considers partial task coverage and aims to optimize for
coverage and maximum workload of the experts simul-
taneously. However, that problem is different from ours
because it is stated as a minimization problem: the goal
there is to minimize the maximum workload and the
fraction of tasks that remain uncovered. In contrast, we
express the Balanced Coverage problem as a max-
imization problem. While we find our objective func-
tion more intuitive, it is also challenging to optimize –
because it can potentially take negative values. Conse-
quently, we adopt an approximation framework that is
tailored to this maximization objective and then design
an algorithm with provable guarantees. On the other
hand, Nikolakaki et al. provide a set of intuitive heuris-
tics, which have no formal approximation guarantees.

Approximation framework: One of the intricacies of
our objective function is that it can potentially take neg-
ative values. The approximation of such functions re-
quires a weaker notion of approximation that is different
from the multiplicative approximation bounds [9, 19].
Although we adopt this framework in our case, our ob-
jective function does not fall into any of the categories
that have been studied before. Therefore, we need to
design new algorithms for optimizing it.
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3 Problem Definition

In this section, we first describe our notation and basic
definitions and then we formally define our problem.

3.1 Preliminaries Throughout, we assume a set of
m tasks J = {J1, . . . , Jm} and a set of n experts
E = {E1, . . . , En}. We also assume a set of skills S
such that every task requires a set of skills and every
expert masters a set of skills. That is, for every task
Jj ⊆ S and for every expert Ei ⊆ S.

An assignment of experts to tasks, is represented by
a binary matrix A, such that A(i, j) = 1 if expert Ei is
assigned to task Jj ; otherwise A(i, j) = 0. Alternatively,
one can view an assignment A as a bipartite graph with
the nodes on one side corresponding to the experts and
the nodes on the other side corresponding to the tasks;
edge (i, j) exists iff A(i, j) = 1. Finally, we often view
an assignment A as a set of its 1-entries.

Given an assignment A, we define the coverage of
task Jj as the fraction of the skills in Jj covered by the
experts assigned to Jj . Formally,

C(Jj | A) =
|(∪i:A(i,j)=1Ei) ∩ Jj |

|Jj |
.

Note that 0 ≤ C(Jj | A) ≤ 1.
Given an assignment A, and the individual task

coverages C(Jj | A), we define the overall coverage as
the sum of the individual task coverages:

C(A) =

m∑
j=1

C(Jj | A).

Finally, given an assignment A, we define the load
of expert Ei in A as the number of tasks that Ei is
assigned to. Formally,

L(Ei | A) =
∑
j

A(i, j).

Given an assignment A, we can also compute the
maximum load among all experts to be

Lmax(A) = max
i

L(Ei | A).

3.2 Problem definition We now define the Bal-
anced Coverage problem as follows:

Problem 1. (Balanced Coverage) Given a set of
m tasks J = {J1, . . . , Jm} and a set of n experts
E = {E1, . . . En} find an assignment A of experts to
tasks such that

(3.3) F (A) = C(A)− Lmax(A)

is maximized.

Observations: A few observations related to this
problem definition are in order.

Observation 1: The objective function F () is a
summation of two quantities: coverage and maximum
load. The coverage is a sum of normalized coverages
and therefore it is a quantity that takes real values
between [0,m]; the value of 0 is achieved when no task
is covered and the value m is achieved when all tasks
are fully covered. The maximum load is a term that
takes integer values between {0,m}, as the maximum
load of an expert is between 0 and the total number
of tasks. Therefore, the values of the two quantities
are comparable and they can be added (or subtracted).
However, depending on the dataset one may need a
balancing coefficient that will tune the importance of
the two parts of the objective. A detailed discussion on
this issue is provided in Section 5.

Observation 2: The objective function (see Eq. 3.3)
consists of two terms: the coverage, which we want
to maximize, and the maximum load, which we want
to minimize. These two terms act in opposition to
one another and a good solution needs to identify a
“balance point” between the experts being used and the
coverage being achieved. Thus, the number of experts
in the solution is not constrained in the definition of the
Balanced Coverage problem itself.

Observation 3: Another observation that will prove
useful is that the first part of the objective, i.e., C(A),
is a monotone and submodular function. We state this
in the following proposition:

Proposition 3.1. The overall coverage function:
C(A) =

∑m
j=1 C(Jj | A) is a monotone and submodular

function.

The details of the proof are omitted due to space
constraints and because all arguments are standard.

Problem complexity: Clearly there are cases where
our problem is easy to solve: for example, if there is
only one task then the best solution is the one assigning
every expert to this one task. However, our problem is
NP-hard in general. Using similar observations as the
ones made by Anagnostopoulos et al. [1] we can show
that the Balanced Coverage problem is NP-hard
even when there are only two tasks.

Theorem 3.1. The Balanced Coverage problem is
NP-hard even for m = 2.

4 The ThresholdGreedy Algorithm

The overall objective function F () of the Balanced
Coverage problem is defined as the difference between
a submodular function (coverage) and another function
(maximum load), which does not have a concrete form
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i.e., it is not linear or convex. Therefore, existing
results on optimizing a submodular function [20] or a
submodular plus a linear or convex function [9, 19, 22]
are not applicable.

We describe ThresholdGreedy, a polynomial-time
algorithm for Balanced Coverage. We also show
ThresholdGreedy outputs an assignment A such that:

(4.4)

C(A)− Lmax(A) ≥
(
1− 1

e

)
C(OPT)− Lmax(OPT),

where OPT is the optimal solution to the Balanced
Coverage problem.

The approximation guarantee described in (4.4) is
a weaker form of approximation than standard multi-
plicative approximation guarantees. However, this is
standard in cases, like ours, where the objective func-
tion is not guaranteed to be positive [9, 19, 22].

4.1 The ThresholdGreedy algorithm A key obser-
vation that ThresholdGreedy exploits is that the value
of Lmax is an integer in [0,m], where m is the total num-
ber of tasks. Therefore, ThresholdGreedy proceeds by
finding an assignment for each possible value of Lmax

and then returns the assignment with the best value of
F (). The pseudocode is given in Algorithm 1.

Algorithm 1 The ThresholdGreedy algorithm.

Input: Set of m tasks J and n experts E
Output: An assignment of experts to tasks A
1: A← ∅, Fmax = 0
2: for τ = 1, ...,m do
3: Create the set of experts Eτ , with τ copies of

each expert
4: Aτ = Greedy(Eτ ,J )
5: Compute Fτ = C(Aτ )− τ
6: if Fτ ≥ Fmax then
7: Fmax = Fτ

8: A← Aτ

9: end if
10: end for
11: return A

In more detail, given a threshold τ on the value of
Lmax, any expert can be used at most τ times. Con-
ceptually, this means that there are τ copies of every
expert and we find Aτ to be the Greedy assignment
corresponding to τ ; Aτ is found by invoking the stan-
dard Greedy algorithm [24] – for optimizing a monotone
submodular function – in order to optimize the overall
coverage i.e. C(). After trying all possible m values of
τ , we pick the assignment Aτ that has the maximum

value of the objective F (Aτ ).
The Greedy algorithm for solving the coverage

problem for input experts Eτ and tasks J (Line 4 of
Algorithm 1) greedily assigns experts in Eτ to tasks
until there are no more experts available. At step ℓ+1,
Greedy finds assignment Aℓ+1

τ by extending Aℓ
τ with

the addition of expert i assigned to task j so that its
marginal gain

(4.5) C̃((i, j) | Aℓ) = C
(
Aℓ

τ ∪ (i, j)
)
− C

(
Aℓ

τ

)
is maximized. In this process, each one of the τ copies
of every expert is considered as a different expert and
once a copy is assigned to a task the copy is removed
from the candidate experts.

4.2 Approximation properties Here, we prove our
approximation result for ThresholdGreedy, as outlined
already in Equation (4.4). Before proving the main
theorem we need the following lemma:

Lemma 4.1. Let Aτ be the assignment of experts to
tasks returned by Greedy (Line 4 of Algorithm 1) for
fixed threshold workload τ . Let OPTτ be the optimal
assignment of experts Eτ to tasks J with respect to the
coverage objective C(OPTτ ). Then, it holds that:

C (Aτ ) ≥
(
1− 1

e

)
C (OPTτ ) .

The proof of this lemma is similar to the proof that
Greedy is an

(
1− 1

e

)
-approximation algorithm to the

coverage problem [24] and is thus omitted.
This lemma says that for every threshold τ (i.e.,

for every iteration of ThresholdGreedy), the Greedy

subroutine is guaranteed to return a solution that
has a good coverage, with respect to the optimal
solution for the coverage problem for this threshold τ .
The lemma does not mention anything about the final
solution picked by ThresholdGreedy, neither does it say
anything about the approximation that this solution has
with respect to the overall objective function F (). We
build upon the lemma and state the following theorem.

Theorem 4.1. Let A be the assignment returned by
ThresholdGreedy and let OPT be the optimal assign-
ment for the Balanced Coverage problem. Then we
have the following approximation:

C(A)− Lmax(A) ≥
(
1− 1

e

)
C(OPT)− Lmax(OPT).

The proof is omitted due to space constraints.
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4.3 Running time and speedups A naive im-
plementation of ThresholdGreedy has running time
O(m2n2); it requires m calls to the Greedy routine
in Line 4, which also if implemented naively takes
time O(mn2). Such a running time would make
ThresholdGreedy impractical. Below, we discuss two
methods that significantly improve the running time of
our algorithm and allow us to experiment with reason-
ably large datasets.

Lazy greedy instead of greedy: First, instead of us-
ing the naive implementation of Greedy, we deploy the
lazy-evaluation technique introduced by Minoux [18]. In
our experiments, we only use this lazy-evaluation ver-
sion of Greedy.

Early termination of ThresholdGreedy: A computa-
tional bottleneck for ThresholdGreedy is its outer loop
(line 2 in Alg. 1), which needs to be repeated m times,
where m is the total number of tasks. Here we show
that not all m values of τ need to be considered. This is
because the value of the objective function as computed
by ThresholdGreedy for the different values of τ is a
unimodal function, which initially increases and then
starts decreasing. Therefore, once a maximum is found
for some value of τ , the algorithm can safely terminate
as the value of the objective will not improve for larger
values of τ .

If we denote by Aτ the assignment produced at the
τ -th iteration of ThresholdGreedy and by Cτ = C(Aτ ),
then Fτ = Cτ − τ . Using this notation, we have the
following theorem.

Theorem 4.2. If there is a value of the threshold τ∗,
such that Fτ∗ ≥ Fτ∗−1 and Fτ∗ ≥ Fτ∗+1, then the
values of the objective function Fτ = F (Aτ ) as computed
by ThresholdGreedy (line 5) for τ = 1, . . . ,m are
unimodal. That is, F1 ≤ F2 ≤ . . . ≤ Fτ∗ and Fτ∗ ≥
Fτ∗+1 ≥ . . . ≥ Fm.

The proof is omitted due to space constraints.
We will call the value of τ for which F () gets max-

imized in the iterations of the ThresholdGreedy algo-
rithm the best-greedy workload and the corresponding
value of the objective the best-greedy objective.

5 Tuning Coverage and Workload Importance

Up to this point, we have assumed that the objective
function is of the form F (A) = C(A) − Lmax(A).
However, sometimes one might need to weight one of
the two terms more heavily than the other. We can do
so by adding a balancing coefficient λ > 0 so that the
new enhanced objective becomes:

(5.6) Fλ(A) = λC(A)− Lmax(A).

Values of λ > 1 assign a higher weight to the coverage;
conversely, small values of λ ∈ (0, 1) assign more
importance to the maximum load.

Finding the assignment that optimizes the en-
hanced objective as given in Eq. (5.6) can still be done
using ThresholdGreedy; for a given λ the only modi-
fication one has to make to the algorithm is to change
line 5 to take the value of λ into account.

However, in each application one must choose an
appropriate value of λ such that it balances the relative
importance of task coverage and expert workload as
desired. In practice, we achieve this by examining
different values of λ and then picking the one that gives
the most intuitive trade-off between the coverage and
the load of the corresponding solutions. There are two
“naive” ways of implementing such a search process:
The first is to run ThresholdGreedy (with all the
speedups we proposed in Section 4.3) for the different
values of λ. The second is to run ThresholdGreedy

without the early termination technique we discussed
in Section 4.3 and for λ = 1. This would mean that
we would have to go over all possible values of τ , and
for each threshold τ store independently the value of
the coverage Cτ for this threshold; then make a pass
over all these values and weigh them appropriately
with different λs. The first solution requires running
ThresholdGreedy as many times as the different λs.
The second solution requires running ThresholdGreedy
once, but for all possible values of threshold τ = m.
Both these solutions are infeasible in practice even for
datasets of moderate size.

An efficient search on the values of λ: We show
that we can explore the solutions of ThresholdGreedy
for different values of λ ∈ Λ ⊆ R+ efficiently, by running
ThresholdGreedy only once and – at the same time –
exploiting the early termination trick we discussed in
Section 4.3. This is based on the following observation:

Proposition 5.1. Assume that λ1 > λ2 and let the
best-greedy objectives achieved for those values be Fλ1

τ1
and Fλ2

τ2 respectively. Then, for the corresponding best-
greedy workloads we have that τ1 ≥ τ2.

The proof is omitted due to space constraints.

6 Experiments

In this section, we evaluate the performance of
ThresholdGreedy using real-world datasets. We com-
pare its performance with three baseline algorithms in
terms of the objective function F () and the running
time. We observe that ThresholdGreedy performs the
best in terms of the objective across all datasets. Addi-
tionally, it finds assignments with a low maximum work-
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load and it runs in a reasonable amount of time, even
for datasets with several thousand experts and tasks.

Our implementation is in Python and available
online 1. We used single-process implementations on
a 64-bit MacBook Pro with an Apple M1 Pro CPU and
16 GB RAM for all our experiments.

6.1 Datasets In order to showcase the efficacy and
the efficiency of our solution we use several real-world
datasets, which have also been used in the past in the
papers that are the most related to ours [1, 21, 22]. The
characteristics of these datasets are shown in Table 1.

IMDB : The data is obtained from the International
Movie Database 2. The original dataset contains in-
formation about movies, TV shows and documentaries
along with the associated actors, directors, movie year
and movie genre(s). We simulate a team-formation set-
ting where movie directors conduct auditions for movie
actors. Thus, we assume that movie genres correspond
to skills, movie directors to experts, and actors to tasks.
The set of skills possessed by a director or an actor
is the union of movie genres of the movies they have
participated in. In order to experiment with datasets
of different sizes, we created three instances from the
original data by selecting all movies created since 2015,
2018 and 2020. We refer to these datasets as IMDB -15,
IMDB -18 and IMDB -20 respectively.

Bibsonomy: Our second dataset comes from bib-
sonomy, a social bookmark and publication sharing sys-
tem [6]. The original dataset consists of a large number
of publications, each of which is written by a set of au-
thors. Each publication is associated with a set of tags.
We filter tags for stopwords and use the 1000 most com-
mon tags as skills in our experiments. We use this data
to simulate a setting where certain expert authors con-
duct interviews for other less prolific authors. Thus, the
prolific authors become the experts and the rest are the
tasks. An author’s skills are the union of the tags asso-
ciated with their publications. Upon inspection of the
distribution of skills among all authors we determine
prolific authors to be those with at least 15 skills. As
before, we created three datasets by selecting all pub-
lications since 2010, 2015 and 2020. We refer to these
datasets as Bbsm-10, Bbsm-15, Bbsm-20 respectively.

Freelancer: This dataset consists of a random
sample from a large set of real tasks that are posted
by users in the Freelancer online labor marketplace
freelancer.com. The data consists of tasks that
require skills and experts that have skills. We refer to
this dataset as Freelancer .

1https://github.com/kvombatkere/Team-Formation-Code
2https://www.imdb.com/interfaces/

Table 1: Summary statistics of our datasets.

Dataset Experts Tasks Skills skills/ skills/
expert task

IMDB-15 5551 18109 26 2.4 3.1
IMDB-18 3871 13183 26 2.1 2.7
IMDB-20 2176 7858 25 1.9 2.4
Bbsm-10 3044 21981 1000 13.7 4.8
Bbsm-15 1904 9061 1000 10.9 4.3
Bbsm-20 177 834 858 11.5 3.6
Freelancer 1212 993 175 1.5 2.9
Guru 6120 3195 1639 13.1 5.2

Guru: Similar to Freelancer , this dataset also
consists of a random sample from a large set of real
projects that are posted by users in the Guru online
labor marketplace guru.com. Again projects require
skills and experts have skills and therefore the data fit
our purposes. We refer to this dataset as Guru.

6.2 Baselines Motivated by existing work, we use
the following three algorithms as baselines:

LPCover: This algorithm is an application of the offline
Linear Programming rounding (LP-rounding) algorithm
discussed by Anagnostopoulos et al. [1]. Using their
LP formulation, the goal is to obtain a fractional
assignment of experts to tasks such that every task is
fully covered and the maximum load is minimized. Once
such a fractional assignment is obtained (let Xij be the
fractional assignment of expert i to task j), they have a
rounding scheme that proceeds in logarithmic number
of rounds; in each round it independently assigns expert
i to task j with probability Xij . They show that
at the end of this rounding phase every task is fully
covered with high probability and the load achieved is
a logarithmic approximation to the optimal load. In
our case, we proceed with the same LP, but in every
iteration of the rounding phase, we check the value of
our objective and we only keep the solution that has
the best value. Our LP has mn variables and O(mn)
constraints. If T is the running time for the LP then
the overall running time of LPCover is O(T +mn). For
our experiments we use Gurobi 3 and we observe that
LPCover is significantly slower than the other baselines.

TaskGreedy: This algorithm is inspired by the previous
work of Nikolakaki et al. [21]. TaskGreedy goes over all
tasks sequentially and for each task it greedily assigns
experts to maximize the task’s coverage. To balance
the maximum workload with the total task coverage
successfully, we implement two heuristics. First we

3https://www.gurobi.com/products/gurobi-optimizer/
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Figure 1: The best-greedy workload Lmax(A) value and the coverage C(A) corresponding to the best-greedy
objective Fλ(A) computed by ThresholdGreedy. Each subplot shows a range of values of the balancing coefficient
λ for each dataset.

randomize the order in which experts are greedily
assigned to tasks in each iteration. This ensures an
even distribution of experts in a setting in which several
experts might be equivalently good for a task. Second,
we only assign experts if they yield a significant increase
in the task coverage. We quantify this coverage amount
by a hyperparameter, β, which we specifically grid
search and optimize for each dataset. Excluding the
grid search, the TaskGreedy algorithm has a running
time of O(mn) since there are n experts available for
each of the m tasks.

NoUpdateGreedy: This algorithm is a simple modifi-
cation of the ThresholdGreedy algorithm: for each
expert-task pair (i, j), we initialize the keys in the prior-
ity queue to v(i, j) = C̃((i, j) | A0), where A0 is the as-
signment with all entries equal to 0. We then use these
initial marginal gain values to iteratively add expert-
task edges (i, j) in decreasing order of their v(i, j) val-
ues, without ever updating them. In order to improve
the performance of NoUpdateGreedy, we only use an
expert if v(i, j) > β, where β is a hyperparameter.
NoUpdateGreedy has a running time of O(mn log(mn)),
since there are mn total expert-task edges, and sorting
these edges takes time O(log(mn)).

In all cases, we do a grid search over the values
of all algorithm-specific hyperparameters and we report
the best results for each algorithm and each dataset.

6.3 Tuning coverage and workload importance
Before showing our experimental results, we discuss how
we set the balancing coefficient λ. For this, we use
the techniques we described in Section 5: we first run
ThresholdGreedy with a large value of λ, and determine

the best-greedy workload and the corresponding value of
the best-greedy objective. We then compute the best-
greedy values for smaller values of λ, and plot the
corresponding values of C(A) and Lmax(A) for each
λ value. Figure 1 shows these scatterplots for each
dataset. In most of our datasets we experimented with
relatively small values of λ ∈ (0, 5]. We then employ
the elbow method to identify a suitable value of λ such
that the best-greedy workload and best-greedy objective
values yield a high value for the overall coverage, C(A)
while simultaneously giving a reasonably low value for
the Lmax(A). The values of λ we picked for the different
datasets are shown besides the dataset name in Table 2.

6.4 Evaluation In Table 2, we show the comparative
performance, in terms of the objective function (Fλ),

the average coverage Ĉ = 1
mC and the maximum load

Lmax, of all four algorithms. Intuitively, a good solution
to an instance of the Balanced Coverage problem
is an assignment A that not only maximizes the overall
task coverage but also minimizes the maximum load of
the assignment. Note that for different datasets we use
different values of λ; we set these values by following
the techniques outlined in Section 5. It is important to
observe here that ThresholdGreedy finds the highest
overall task coverage independent of the value of λ, and
consequently would also outperform the baselines for
other λ values as well.

Objective values F and workload Lmax: From
Table 2, we observe that ThresholdGreedy consis-
tently finds the assignment with the best objective
value across all our experiments. On average across all
datasets ThresholdGreedy performs about 15% better
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Table 2: Experimental performance of ThresholdGreedy and baseline algorithms in terms of the objective Fλ,
the maximum load Lmax and the average task coverage Ĉ = 1

mC. The best values for each dataset are in bold.

Dataset
ThresholdGreedy LPCover TaskGreedy NoUpdateGreedy

Fλ Lmax Ĉ Fλ Lmax Ĉ Fλ Lmax Ĉ Fλ Lmax Ĉ

IMDB-15 (λ = 0.05) 885 7 0.99 777 100 0.97 475 362 0.92 720 150 0.96
IMDB-18 (λ = 0.05) 643 8 0.99 474 122 0.90 339 264 0.91 448 200 0.98
IMDB-20 (λ = 0.1) 771 7 0.99 676 87 0.97 644 118 0.97 650 100 0.95
Bbsm-10 (λ = 0.1) 2039 70 0.96 1691 282 0.90 1319 243 0.71 1097 200 0.59
Bbsm-15 (λ = 0.05) 389 27 0.92 336 55 0.86 96 126 0.49 129 250 0.84
Bbsm-20 (λ = 1) 438 41 0.57 418 84 0.60 402 93 0.59 408 94 0.60
Freelancer (λ = 0.1) 88 6 0.95 59 32 0.92 63 36 0.99 25 50 0.76
Guru (λ = 0.1) 311 4 0.99 287 25 0.98 225 30 0.80 17 33 0.16

Figure 2: Running times (in seconds) of ThresholdGreedy and baseline algorithms, in logarithmic scale.

than LPCover and 55% better than TaskGreedy and
NoUpdateGreedy. As the datasets get larger, the su-
perior performance of ThresholdGreedy becomes more
evident. This may be attributed to our algorithm find-
ing solutions with significantly lower Lmax.

LPCover is consistently the second-best algorithm
in terms of the objective function. It also performs
particularly well on the Bbsm-15, Bbsm-20 and Guru
datasets: it returns objective values that are compara-
ble (yet lower) to those returned by ThresholdGreedy.
TaskGreedy and NoUpdateGreedy perform relatively
well on the IMDB -20 and Bbsm-20 datasets: they re-
turn objective values that are within 20% of the ob-
jective value of ThresholdGreedy. This is because
the smaller datasets lend themselves better to heuris-
tic choices made by these baselines: the pool of suit-
able experts available to TaskGreedy is small and the
initial marginal gain values used by NoUpdateGreedy

are good estimators of the true marginal gain values in
subsequent iterations. While the baseline algorithms of-
ten achieve a overall task coverage percentage of 90%,
ThresholdGreedy achieves superior task coverage in the
majority of the cases.

In terms of maximum workload, ThresholdGreedy
consistently finds the assignment with the lowest maxi-

mum workload value across all our experiments. Ad-
ditionally, the baselines return maximum load val-
ues that are significantly larger than those returned
by ThresholdGreedy. On average across all datasets
ThresholdGreedy finds a maximum load value that is
80% smaller than the maximum workload values re-
turned by the baselines. This is because, in an attempt
to maximize the overall task coverage, the baseline al-
gorithms end up making costly assignments of experts
to tasks. While we do see some examples of reason-
able workload values (e.g., for the Guru dataset), in
most cases the workload values returned by the base-
lines would be infeasible in practice.

Running times: While ThresholdGreedy has a the-
oretical running time of O(m2n2), the speed-up tech-
niques discussed in Section 4.3 and Section 5 lead to
significantly lower running times in practice. Figure 2
shows a bar plot with the running times of all algorithms
for each dataset in logscale. For the smaller datasets
(e.g. Freelancer and Bbsm-20), we observe that the
running time of ThresholdGreedy is on the order of a
few seconds. Even for the largest datasets (e.g., Bbsm-
2010 and IMDB -15) the running time of our algorithm
is within a few hours. We observe that TaskGreedy
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and NoUpdateGreedy run faster than our algorithm, but
LPCover runs slower. This is due to the computational
bottleneck of solving an LP for a large number of vari-
ables. Note that the running times of the baselines as
we report them here do not include the grid search we
performed in order to tune their hyperparameters.

7 Conclusions

In this paper, we introduced the Balanced Coverage
problem, a new problem in team formation, where the
goal is to assign experts to tasks such that the total cov-
erage of the tasks (in terms of their skills) is maximized
and the maximum workload of any expert in the assign-
ment is minimized. To the best of our knowledge we are
the first to study this problem and study its approxima-
bility. We also demonstrated the practical utility of the
algorithmic framework we proposed in a variety of real
datasets. In the future, we plan to investigate whether
other team-formation problems that also take into con-
sideration the social relationship between experts can
be studied within the framework we proposed here.
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