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A quantitative model was constructed to char-
acterize and predict the success of professional
male tennis players, given their performance in
their first 40 matches. The (probabilistic) pre-
diction of player success was transformed into a
binary classification problem that was solved us-
ing 2 Machine Learning methods: Logistic Re-
gression and a Multi-Layer Feed-Forward Neu-
ral Network. Based on a detailed analysis of
the ATP ranking system and tournament per-
formance, a top 30 ATP rank was used as a
metric of player success. The classification of
tennis player success was to essentially predict
the likelihood of a given player attaining a top
30 rank. The machine learning models were
trained using processed data consisting of input
vectors of extracted features, such as cumula-
tive/average match statistics from a player’s ini-
tial 40 matches. Python scripts were executed
to extract the required features from a data set
containing detailed individual tennis match data
from 2000 - 2017. Feature selection and hyper-
parameter tuning were performed on the models
to optimize performance. The Logistic Regres-
sion model (accuracy=0.82) marginally outper-
formed the Neural Network (accuracy=0.78) on
a test data set. In terms of stratified k-fold cross
validation performance, both models performed
similarly yielding a mean accuracy of about 76%,
mean precision of 77% and mean recall of 75%.

I. INTRODUCTION

Men’s professional tennis has (almost) always had an
elite set of players that have dominated the rankings and
bigger tournaments. Based on preliminary observations,
it is evident that top-ranked tennis players in the world
consistently outperform lower-ranked players. Under-
standing the trajectory of a tennis player’s long-term
performance is a complex problem, and consequently
player success prediction is a good candidate problem
to be approached using machine learning classification.

Predicting tennis match outcomes has been studied
and both probabilistic Markov chain models as well as
machine learning models have been used to predict the
outcome of a match [2]. The current state-of-the-art
probabilistic models use hierarchical stochastic expres-
sions based on Markov chains [6].

The goal of this project is to investigate the use of
(supervised) machine learning classification methods to
predict the future success of a tennis player. We begin
by first constructing a predictive model and extracting
features from a dataset containing tennis match data.
The underlying assumptions for constructing the model
are explained and a metric to measure the ’success’ of
a player is chosen - a top 30 ATP rank - and explained
based on the observations and results of [7] and [8].

After careful assessment of several classification mod-
els and approaches in [1], [2] and [6], Logistic Regres-
sion and Feed-Forward Neural Network methods were se-
lected. Both these model have good performance charac-
teristics for classification and are suitable given the type
and size of dataset in this problem. This paper discusses
the training process of the two models. We then analyze
and compare the predictive classification performance of
these two models on test data based on several metrics
such as accuracy, precision, recall, F1 score, ROC curve
and cross validation performance.

II. MODEL CONSTRUCTION

A. Data Source and Acquisition

The primary source of raw data for this project is a
data set (csv file obtained from data.world website) con-
taining detailed tennis match data of professional tennis
matches played on the men’s ATP tour from 2000 to
2017. This is a large data set with about 52,000 tuples
and 48 attributes of tennis match data, containing infor-
mation about the players and match statistics. Each row
in the dataset represents a single match. The following
Figure 1. shows the attribute information of the data
set - tournament information, player details and match
scores and data (such as number of serves, aces, etc).

FIG. 1: Attributes in ATP Tennis Match Data set

The match data gives information about the exact
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rank, age, points of both the winning and losing players.
This dataset was mined first to extract a feature set for
the machine learning model, by extracting average and
cumulative match statistics for each player in the data
set, and also generating a binary value for the target
class label, explained subsequently.

B. Predictive Model and Assumptions

The first step in model construction involved the
defining of a metric that would provide us with an
accurate measure of a player’s success. After an analysis
of the men’s ATP ranking system provided in [9] it was
concluded that a top 30 ATP rank would serve as a good
measure of a player being successful. The top 30 ranked
players represent an elite group in men’s tennis who
consistently perform at a high level, and we accept this
as ’success’ for a tennis player. A top 10 ranking would
be too stringent, since a player ranked in the top 30 also
often has tournament wins and comparable performance
data. On the other hand a top 50 ranking doesn’t
necessarily indicate player success since there are several
top 50 ranked players who have never won a tournament.

We then identify a set of features and define the
number of matches or time period that defines a player’s
initial match performance (initial match data). In order
to be consistent across players, we consider the first
40 matches of the player, in chronological order in the
dataset. We impose another constraint of age such
that the 40 matches played should be before the player
turned 26. This ensures that we have initial or early
match data for all players that have played at least 40
matches on the tour.

There are several underlying assumptions in the pre-
dictive model, which are detailed below:

• We assume that there must be some correlation be-
tween a player’s initial performance and his future
success. If the two were not correlated then there
would be a random distribution of success based
on players’ initial match data.

• It is assumed that 40 matches provides a fair rep-
resentation of a player’s initial performance. This
would correspond to several tournament’s of tennis
matches and should (in theory) account for random
deviations and minor performance outliers.

• It is assumed that the discussion and results of [7]
are accurate and that tennis player’s peak during
or after their mid-late twenties. This allows us to
use the age 26 as a threshold to filter out older
players in the dataset

• We assume it is possible to extract a set of features,
X from the raw dataset that represent the perfor-
mance of a tennis player accurately and help model

his future career trajectory, and that a top 30 rank
is an adequate measure of a player’s success

III. FEATURE EXTRACTION

A. Data Cleaning and Processing

Data cleaning and processing was an important ele-
ment of this project, since we work a large (and im-
perfect) dataset. The pandas Python library was used
to process and manipulate data. As a first measure,
rows with incomplete match statistic data were removed
and/or ignored in computation involving row iterations.
Additionally, certain player heights were missing and
were filled in manually.

Once features were extracted, all columns were nor-
malized using the following min-max normalization pro-
cedure, to ensure an attributes data was between 0 and
1. Note here that vi is a value under attribute A and is
mapped to v′i which lies in the range [0,1].

v′i =
vi −minA

(maxA −minA)

B. Feature Vector Generation

A supervised machine learning algorithm requires a
set of labelled examples for training. In the context of
our model for predicting player success, the following two
elements were generated from the raw dataset:

1. An input feature vector
#»

X = (x1, x2, ..., xn), rep-
resenting the various feature values for each row of
the training data. In our model, these features are
calculated cumulative and average match statistics
as well as physical features such as height.

2. A target class label value y, representing the binary
classification output value for a row. In our model,
this is a True or False value depending on whether
or not a given player broke into the top 30 ranked
players in the world.

Python scripts were written to process the raw data
set to extract the relevant features for this model.
These features were selected based on a similar ap-
proach as used in [2] and represent the best estimated
(non-random) predictors of a tennis player’s success -
match statistics and physical features. The features are
described subsequently as well as the extraction method
used for each feature.

In order to process the data in a organized manner,
first a Python script was written to extract unique player
information from the data set. Figure 2 shows this
unique player information. The data yielded 1981 dif-
ferent players and then features relevant to each of these
players were extracted, while keeping the constraint of
40 matches played under the age of 26.
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FIG. 2: Extracted Unique Player Information

1. Player Height: The player’s height in cm was
recorded, Height(cm)

2. Win Rates: Each player’s average win rate infor-
mation against differently ranked opponents was
computed over all of his initial matches. Over-
all Win % is the player’s win rate against all op-
ponents, Top 100 Win % is the player’s win rate
against opponents ranked in the top 100 and Top
30 Win % is the player’s win rate against oppo-
nents ranked in the top 30.

3. First Serve Statistics: Each player’s mean first
serve statistics were computed over all of his ini-
tial matches. First Serve % and First Serve Win
% represent the mean percentage of first serves a
player made and the mean percentage of points he
then won.

4. Break Point Performance: Each player’s mean
break point statistics were computed over all of
his initial matches. BPSave % and BPConv %
represent the mean percentage of break points a
player saved and the mean percentage of break
point chances he converted.

5. Aces and Double Faults: The number of aces
and double faults for each player was used to
calculate their mean number of aces per match,
Aces/Match and their mean number of double
faults per match, DF/Match

6. Top 30 Target Class: The entire data set was
scanned for each player to check if the player ever
attained a rank in the top 30, Future Top 30, and
could be referred to as successful (True) or not
(False), in terms of our classification problem.

These 9 distinct features (italicized above) were calcu-
lated for each player the raw data set yielded 275 tuples
of processed data that could be then used to train and
test the machine learning models. This is discussed in
the subsequent section.

C. Preliminary Feature Analysis

Figure 3 below shows the set of the different features
that were extracted from the raw data. Some prelimi-
nary analysis was conducted on this data to get a better
understanding of the relationship between attributes and
the dependence of the target class label (Future Top 30 )
on them.

FIG. 3: Extracted Player Features from ATP Match
Data

The following Figure 4. shows the distribution of
Overall Win % as a function of the frequency of Future
Top 30, and it is easy to see that there is a correlation
between a higher win rate and success (as expected).

FIG. 4: Influence of Overall Win % on Future Top 30
Success

Similarly Figure 5. indicates a similar correlation be-
tween the Top 30 win rate and future success. This
is evident from the two graphs (green and blue) being
slightly shifted, indicating that players with higher win
rates against higher ranked opponents are more likely to
be successful in the future.
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FIG. 5: Influence of Top 30 Win % on Future Top 30
Success

Additionally, it was observed that there were signifi-
cant differences between the statistical values (such as
mean, median and quartile ranges) of the attribute val-
ues when grouped by whether or not they influenced
future top 30 success.

IV. MACHINE LEARNING MODELS

In this section we outline the machine learning models
used and their relevance to the classification of player
success. Also outlined are the optimization techniques
used to deliver the best classification performance for
the dataset using Python’s machine learning library [9].

A. Logistic Regression

The Logistic Regression model uses the logistic or sig-
moid function (Eq.1) to map real-valued input values to
values between 0 and 1.

σ(t) =
1

1 + e−t
(1)

For our prediction, the model consists of a vector of n
match features,

#»

X = (x1, x2, ..., xn) and a vector of n+1

real-valued model parameters,
#»

β = (β0, β1, β2, ..., βn).
The n-dimensional feature vector is first projected to a
real number, z (Eq.2). Thus, σ(z) = 1

1+e−z represents
the probability of a player being successful and for classi-
fication purposes we can assign a threshold (such as 0.5)
to enable a binary prediction.

z = β0 + β1x1 + β2x2 + ...+ βnxn (2)

The objective of this model is to efficiently optimize
#»

β such that z can be mapped to the (0, 1) output space,
while minimizing the Logistic Loss function L(p) (Eq.3).
In the equation below, for each of the N tuples in the

training set, pi corresponds to the predicted value, yi is
the true value of the target class label.

L(p) =
−1

N

N∑
i=1

pi log(yi) + (1− pi) log(1− yi) (3)

The Logistic Loss function can be minimized using
several methods such as Stochastic Gradient Descent,
liblinear Algorithm, and the newton-cg method available
in the scikit learn python machine learning library. The
optimal solver based on exhaustive grid searching was
chosen to be the liblinear method.

B. Multi-Layer Feed-Forward Neural Network

A Neural Network performs nonlinear regression (ap-
proximating any function) by iteratively learning a set
of weights and thresholds for prediction. The network
predicts an output #»z = f(

#»

X, #»w,
#»

T ), where
#»

X is the in-

put feature vector and #»w and
#»

T are the learned weights
and thresholds. One of the learning methods, known as
Back-propagation, enables the network to learn by an it-
erative process of optimizing a performance (or error)

function P (Eq.4), where
#»

d is the desired target value.

P (
#»

d , #»z ) = −|| #»d − #»z ||2 (4)

The neural network is typically structured to have one
or more hidden layers to learn nonlinear associations
from training data in the dataset and uses a non-linear
activation function, K (such as a sigmoid or tanh func-
tion) to predict values f(x), as shown in (Eq.5), where
wi is the weight of input xi. Note that in our implemen-
tation a single hidden layer with 64 Neurons was used.

f(x) = K

(
N∑
i=1

wixi

)
(5)

There are many different training algorithms, which
aim to optimize the networks weights to generate the
best outputs for a set of training examples. For example,
the back-propagation algorithm uses gradient descent to
reduce the mean-square error between the target values
and the network outputs. The optimal solver based on
exhaustive grid searching was chosen to be the Stochastic
Gradient Descent algorithm.

C. Model Optimization and Hyper-parameter Tuning

Both models were optimized using the best-
performance functions as returned by the exhaustive grid
searching method. The following other parameters were
tuned using the GridSearchCV exhaustive grid searching
method. Given below is a summary of the parameters
and the optimal value (in parenthesis) returned by the
grid searching algorithm.
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1. Logistic Regression: C (1), solver (’liblinear’)

2. Neural Network: activation(’relu’), learn-
ing rate init(0.01), solver(’sgd’)

Note C is the regularization strength, and ’sgd’ refers
to stochastic gradient descent, ’relu’ is the rectified linear
unit function, which returns f(x) = max(0, x). Hyper-
parameter tuning was done using a training and test data
set split in a 3:2 ratio, using 5-fold cross validation.

D. Feature Selection

For the logistic regression model, a Recursive Feature
Elimination (RFE) algorithm was implemented, in an
attempt to isolate the features having the maximum ef-
fect on the model’s performance. This was performed in
addition to the preliminary feature analysis in order to
eliminate features that might have little or insignificant
effect on our prediction accuracy. Figure 6. shows the
set of 7 features that were returned by the RFE Algo-
rithm. After trying different numbers of features, it was
concluded that this set of 7 features provided the best
classification performance.

FIG. 6: Features Selected using Recursive Feature Elim-
ination

For the neural network algorithm, the features selected
for the logistic regression algorithm were used as a start-
ing point and an exhaustive grid search optimization pro-
cedure was used to isolate the features yielding the best
classification performance, shown in Figure 7.

FIG. 7: Features Selected for Neural Network

Both models weight similar features heavily and the
only difference in feature selection was the logistic re-
gression model chose First Serve % over the Neural Net-
work’s choice of BPConv %.

V. MODEL COMPARISON AND EVALUATION

Python code (using the scikit learn library) was writ-
ten to construct both the Logistic Regression and Neural
Network classification models. These models were then
optimized and tuned as described in the previous section
and training and test sets were generated by project-
ing data from the selected set of 7 features. Note that
all detailed code and output is available in the attached
IPython notebooks.

A. Training and Test Data Performance

A 70-30 ratio of Training to Test Data was used on
the models. Thus, the models were trained using 70%
of the samples and the remaining 30% were used to test
the models’ predictive performance. Several iterations
were performed and the classification result output for
the Logistic regression model is summarized below in
Figures 8.

FIG. 8: Logistic Regression Classification Performance
on Test Set

Similarly, the classification result output for the Neu-
ral Network model is summarized below in Figures 9.

FIG. 9: Neural Network Classification Performance on
Test Set

It can be observed that the Logistic Regression model
slightly outperforms the Neural Network with an average
precision and recall of 0.82 over the 0.78 of the Neural
Network. The incremental performance of both models
is also summarized using Receiver Operating Character-
istic (ROC) curves shown below in Figures 10 and 11.
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FIG. 10: Logistic Regression ROC for Test Set

FIG. 11: Neural Network ROC for Test Set

While the Neural Network outperforms the Logistic
Regression model during initial stages of classification
with a higher True Positive Rate (TPR), the Logistic Re-
gression model was again observed to have a marginally
better performance as it progresses through the Test
Data.

B. Cross Validation Performance

5-fold stratified cross validation was used to validate
the performance of the models and check against over-
fitting on a specific test data set. The results of the
cross-validation are summarized below, indicating both
the average case performance and the best case results
within the cross validation folds.

TABLE I: Comparison of Logistic Regression and Neural
Network Model on Test Data

Metric
Logistic Regres-
sion

Neural Network

1
Accuracy
(best, worst)

0.757 (0.815, 0.69) 0.764 (0.833, 0.723)

2
Precision
(best, worst)

0.773 (0.944, 0.69) 0.769 (0.941, 0.67)

3
Recall (best,
worst)

0.733 (0.885, 0.67) 0.765 (0.885, 0.52)

4 Run Time 0.33 s 2.01 s

It is evident that the two models have very similar pre-
diction performance, based on all three metrics. The
Neural Network marginally outperforms the Logistic Re-
gression model on accuracy and recall, and marginally
under-performs on precision. In terms of the ranges of
the metrics of prediction, both models had very good
best case results (about 90% for precision and recall, 82%
for accuracy), and the Neural Network had the smallest
accuracy range with a worst case accuracy of 0.723. It is
important to note that the Neural Network has an out-
lier worst case recall performance at 0.52, which is signif-
icantly lower than the other worst case results (which lie
in the region of 0.69). In terms of run time, the Neural
Network is significantly slower, as it takes about 6 times
longer to run than the Logistic Regression model.

VI. ANALYSIS OF RESULTS AND SCOPE FOR
IMPROVEMENT

Using the performance evaluation in the previous
section as a baseline, we observe that we have created
two predictive classification models that predict the
future success of a tennis player with a mean accuracy
of about 76% based on cross validation results. While
this isn’t state-of-the-art performance, it is important
to recognize that the number of samples in our data
set was N = 275, which is a limitation in terms of
improving predictor performance. Additionally, it is
important to recognize that the evolution of a tennis
player is also influenced by random events that are
impossible to model mathematically.

The models created enable an individual to learn new
information about the probabilistic success of a given
tennis player, which is very relevant for tennis player,
coaches and fans within the community. There is work
that can be done to improve this project, and listed be-
low are some of these potential improvements:

• A larger match data set, spanning a longer time pe-
riod could be used to improve the models by adding
more data points. Additionally, different metrics
of success in combination with several constraints
(Player Age and Number of Matches) could be
tested in an attempt to optimize the problem of
defining/measuring player success.

• Classification accuracy improvement techniques
such as ensemble methods and bagging could be
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used in an attempt to generate better results.
There is scope to further fine-tune and test the
machine learning models.

• A more detailed feature set consisting of more than
9 features of statistics and player information could
be extracted. This would enable feature selection
algorithms a wider range of parameters to consider.

• This project only analyzes men’s tennis match
data, but it could be expanded to also include
women to see if there are major similarities and
differences.

• There is a lot of scope for real-world use and pre-
dictions in order to check the validity of our model,
outside of a testing environment.

VII. CONCLUSION

A quantitative model was constructed to characterize
and predict the success of professional male tennis play-
ers, given their performance in their first 40 matches.
The (probabilistic) prediction of player success was
transformed into a classification problem that was
solved using machine learning methods.

The data acquisition and feature extraction processes
were described in detail, highlighting the important .
We outline the machine learning models used - Logistic
Regression and a Multi-Layer Feed-Forward Neural
Network - and their relevance to the classification of
player success.

Also outlined are the optimization techniques used to de-
liver the best classification performance for the dataset
using Python’s machine learning library. The Logistic
Regression model (accuracy=0.82) marginally outper-
formed the Neural Network (accuracy=0.78) on a test
data set. In terms of stratified k-fold cross validation
performance, both models performed similarly yielding
a mean accuracy of about 76%, mean precision of 77%
and mean recall of 75%. Note that the pandas and scikit
learn Python libraries were used extensively to perform
data processing and the machine learning classification.

All commented code and output is available in the at-
tached IPython notebooks.
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