
Detecting Trading Trends in Streaming Financial Data using
Apache Flink

Emmanouil Kritharakis Shengyao Luo Vivek Unnikrishnan Karan Vombatkere
{ekrithar, jaxluo, viveku, kvombat}@bu.edu

Boston University, Boston, USA

ABSTRACT
Modern financial analytics rely on high-volume streams of event

notifications that report live market fluctuations based on supply
and demand. Accurately identifying trends or breakout patterns
based on the Exponential Moving Average (EMA) in the develop-
ment of an instrument’s price early on is an important challenge, so
as to buy while the price is low and sell before a downtrend begins.

This paper aims to solve the above challenge with a distributed,
event-streaming solution built using Apache Flink. We present and
implement a solution that leverages customized window operators
to calculate the EMA and find breakout patterns, using event gen-
eration parallelism to facilitate the rapid processing of the input
stream uses sinks to collect and output results, and scales easily on a
distributed Flink cluster. We empirically test our design on metrics
specified by the benchmarking platform for the DEBS 2022 Grand
Challenge and observe a throughput of 45 batches per second and
an average latency of 120 ms.

CCS CONCEPTS
• Information systems → Data stream mining; • Computing
methodologies→ Distributed computing methodologies.

KEYWORDS
Apache Flink, Stream Processing, Financial Data
ACM Reference Format:
Emmanouil Kritharakis Shengyao Luo VivekUnnikrishnan Karan
Vombatkere. 2022. Detecting Trading Trends in Streaming Financial Data
using Apache Flink. In The 16th ACM International Conference on Distributed
and Event-based Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3524860.3539647

1 INTRODUCTION
The DEBS Grand Challenge is an annual competition in which

participants compete with the goal of building scalable, distributed
and event-based systems to solve real-world problems. This year’s
challenge involves analyzing streaming financial data in the form of
event notifications containingmarket data about trades. By tracking
the Exponential Moving Average (EMA) - a quantitative indicator
to identify trends in the market - the task is to detect crossover

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539647

events or breakout patterns, and automate Buy and Sell advice
for instruments in a streaming setting. Breakout patterns describe
meaningful changes in the development of instruments that can
indicate the start of a market trend. There are two main breakout
patterns we are interested in: Bullish breakouts which correspond
to an upcoming rise in price, and Bearish breakouts that correspond
to a potential downtrend.

This paper uses Apache Flink [5, 6], an open-source, unified
stream-processing and batch-processing framework. Our approach
first identifies trends in the EMA for individual equities using event
aggregation over tumbling window operators, and then uses the
calculated EMA trends to predict buy/sell advises upon detect-
ing specific breakout patterns. The code is publicly available on
Github [1].

Themain objective is to compute two separate, sequential queries
- Query 1 and Query 2 - that are computed over 5-minute tumbling
windows. For each window 𝑤𝑖 , Query 1 computes two different
EMA values, 𝐸𝑀𝐴38

𝑤𝑖
, 𝐸𝑀𝐴100

𝑤𝑖
(which correspond to smoothing fac-

tors of 38 and 100 respectively) which serve as quantitative indi-
cators of trends in the market data. Query 1 passes this EMA data
stream keyed by symbol to Query 2, which then tracks these two
different exponential moving average values for each window, for
each symbol and detects the two breakout patterns.

The data provided by the competition is a stream of event no-
tifications that is pre-filtered to contain pricing information per
equity symbol for each instrument [8]. All events notifications are
time-stamped with a global CEST timestamp, and all definitions
considered are per symbol. As per the requirements of the challenge
all calculations are based on events grouped into tumbling windows
of 5 minutes’ length, and we calculate the required EMA’s for all
symbols but only generate output for a specific set of symbols that
have been subscribed to.

Our solution leverages Flink’s streaming dataflow architecture,
and successfully processes tens of millions of streaming financial
event notifications in just a few minutes. Our design runs on a
distributed Flink cluster and allows for easy monitoring of real-
time metrics on a dashboard.

2 BACKGROUND
2.1 Apache Flink

Apache Flink is an open-source stream processing framework
that allows for efficient computation of real-time events. It offers re-
liable and stable performance, fast data processing and easy-to-use
APIs. Flink uses operators, that are essentially layers of processing
logic that sequentially implement operations on a stream of data.

Flink operators allow for an arbitrary number of parallel in-
stances, allowing for a scalable, distributed design. This architecture

https://doi.org/10.1145/3524860.3539647
https://doi.org/10.1145/3524860.3539647

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Emmanouil Kritharakis, Shengyao Luo, Vivek Unnikrishnan, Karan Vombatkere

requires a specific partitioning of data after a transformation, with
the most common ones being Key By (Hash) and Rebalance. Key
By allows for a certain chunk of the transformed data to be hashed
and sent downstream to a specific instance. Rebalance uses the
round-robin algorithm to distribute data equally among partitions.

In our solution, the data is partitioned using Key By and Rebal-
ance since we want each trading symbol to be sent to the same
operator. We usewindow operators to implement Query 1 andQuery
2. Windows group events into buckets and enable bounded process-
ing of unbounded input streams [9]. This allows for computation
to happen as if the stream was segmented into separate pieces of
finite data while ingesting a continuous data stream. The properties
of the custom windows are then manually defined using custom
triggers and evictors using the Flink framework.

The trigger is a piece of logic that determines when to invoke the
window function. It can be configured to be a function of time, num-
ber of stream elements, etc. The evictor of the window decides when
to remove elements from a window. The process window function is
the main logic of the window, and performs the actual operations
on chunks of the data stream as per the rules defined by the trigger
and evictor. We evaluate both a custom window architecture and
Flink’s tumbling windows in our solution.

In our design we also use watermarks and buffer timeouts.Wa-
termarks tell operators that no elements with a timestamp older
or equal to the watermark timestamp should arrive at the oper-
ator. They are emitted at the sources and propagate through the
operators of the topology. Buffer timeouts allow us to fine tune our
solution and improve latency, by ensuring that at any stage no
window waits too long for data. By manipulating the watermark
strategy and buffer timeout we achieve a high degree of control
over the datastream’s flow through the window operators.

2.2 Exponential Moving Average (EMA)
The exponential moving average (EMA) is a common indicator

that continuously tracks pricing. It is a type of weighted moving
average that gives more weight to recent price data. In the challenge,
we measure non-overlapping five-minute windows by the formula
below, where𝑤𝑖 corresponds to the time window, 𝐶𝑙𝑜𝑠𝑒𝑤𝑖

· is the
last price event observed within window 𝑖 , and 𝑗 is the smoothing
factor for the EMA.

𝐸𝑀𝐴
𝑗
𝑤𝑖

=

[
𝐶𝑙𝑜𝑠𝑒𝑤𝑖

·
(2
1 + 𝑗

)]
+ 𝐸𝑀𝐴

𝑗
𝑤𝑖−1

[
1 −

(2
1 + 𝑗

)]
In Query 1, we calculate two EMA values with smoothing factor 38
and 100 for each window. The initial EMA values are set to 0 for
both smoothing factors.

2.3 Breakout patterns
In tradingmarkets, breakout patterns representmeaningful changes

in the development of a price that indicates a beginning of rising/-
falling trend. A bullish breakout occurs at the start of a price uptrend,
and a bearish breakout occurs at the start of a price downtrend. Es-
timating these breakout patterns is an important task, since based
on these trends traders can choose to buy (bullish breakout) or
sell (bearish breakout) financial instruments to maximize revenue.

We use the following definitions of the two breakout patterns as
defined by the DEBS 2022 challenge:

Bullish Breakout = (𝐸𝑀𝐴38
𝑤𝑖

> 𝐸𝑀𝐴100
𝑤𝑖

) ∧ (𝐸𝑀𝐴38
𝑤𝑖−1 ≤ 𝐸𝑀𝐴100

𝑤𝑖−1)

Bearish Breakout = (𝐸𝑀𝐴38
𝑤𝑖

< 𝐸𝑀𝐴100
𝑤𝑖

)∧(𝐸𝑀𝐴38
𝑤𝑖−1 ≥ 𝐸𝑀𝐴100

𝑤𝑖−1)

3 DESIGN & IMPLEMENTATION
In this section we discuss how the solution was designed and

implemented. We will go through each operator as well as the
visualization aspect of the solution shown in Figure 1. We focused
on two aspects during the design of the operators: The first is
that every operator should have exactly one responsibility so that
it can be easily decoupled from other operators. The second is
that the design should be scalable so that when faced with higher
load, horizontal scaling of the number of task manager should
subsequently reduce back pressure and improve performance.

3.1 Event generator
The client provided by the DEBS Grand Challenge provides with

a stream of events in the form of batches. These batches are of a
fixed size and contains the list of events and the specific symbols
that need to be reported back to the benchmark. The initial imple-
mentation included a generic loop logic which continuously gets
the next batch and sends the mapped custom Stock Measurement
event to the next operator. The limitation of this approach was
that we were processing one batch at a time leading to decreased
throughput. In order to tackle this problem, we decided to design
the operator to emit batches instead of the list of Stock measure-
ment objects. As seen in the code snippet below, the source client
defined by the challengeClient variable gets the next batch using
the benchmark variable defined by newBenchmark which is then
converted to an IncomingBatch object and sent to the next stream

1 while (true) {

2 Batch batch = challengeClient.nextBatch(newBenchmark);

3 ctx.collect(new IncomingBatch(batch));

4 }

Each batch is then processed by the Event Generator operator
to map the events in the batch to the custom Stock Measurement
objects. By controlling the parallelism of the Event Generator op-
erator, we can control the input batch throughput. In the code
snippet below, Flink’s FlatMap operator is used with custom Flat
map function defined by the EventGenerator class.

1 incomingBatchDataStream

2 .flatMap(new EventGenerator(benchmark))

3 .name("Event Generator");

3.2 Query 1
The stream of Stock Measurement events are processed by

the Query 1 operator. The Query 1 operator is responsible for
the calculation of the EMA values per symbol. Currently, as per
requirement, the EMA values are calculated for the smoothing
factors of 38 and 100 using the formula defined in 2.2 section. The
initial design used the default Tumbling window operator provided
by Flink with the custom watermark strategy that was defined. As

Detecting Trading Trends in Streaming Financial Data using Apache Flink DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Figure 1: Design Data Flow Architecture

defined in Section 2.1, the watermark strategy ensures the correct
ordering of events. Using the event timestamp as well as the source
of the stock measurement, the maximum timestamp out of all the
sources was emitted as the watermark. By default, Flink emits the
watermark every 200 ms. But we noticed that due to the window
being triggered only at the end of the configured window time, the
latency of the application is high. Rather the ideal solution would
be to process each element and check if it is the last event of the
batch and then pass it to the respective window. Thus we created a
custom window operator which provides a function for processing
individual events as well as a function which executes when the
configured time is reached. This enabled the application to send
results for a symbol in a batch as soon as its processing is ended
rather than waiting for the end of the window, which reduced the
latency. The details of the latency decrease can be found in Section 5.
The code snippet below shows the Query 1 operator with a custom
watermark strategy keyed by the symbol of the incoming stock
event.

1 incomingBatchDataStream

2 measurements

3 .assignTimestampsAndWatermarks(

4 WatermarkStrategy

5 .forGenerator(context ->

6 new StockMeasurementWatermarkGenerator ())

7 .withTimestampAssigner(new

8 StockMeasurementWaterMark ()))

9 .keyBy(StockMeasurement :: getSymbol);

The Query 1 operator also uses Value State, Flink’s custom object
to store and retrieve values scoped to the key of the window, to
store the intermediate EMA values. The operator sends messages
to 2 operators down the chain The first one is the Q1 Side output
operator which deals with sending the benchmarks for each batch
of symbols. The second is the Query 2 operator which will use the
EMA values to check Bullish and Bearish patterns.

3.3 Query 2
The stream of updated values coming from Query 1 in the form

of EMAStream objects. Similar to query 1, the stream is keyed by
symbol and every element is processed separately. For each element,
the advice for the EMA values is calculated by using the formula
defined in Section 2.2. If a valid advice is returned, the crossover
event is created and updated to the value state of the symbol. Sim-
ilar to query 1, if the event signifies the end of the batch, then a
benchmark event is sent to the Q2 Side output operator. The code

snippet below shows the Query 2 operator keyed by the symbol
of the incoming event and processed using the custom process
function defined by the FindBreakPattern class.

1 emaDataStream.keyBy(EmaStream :: getSymbol)

2 .keyStream.process(new FindBreakPattern ())

3 .name("Query 2: Crossover Check");

3.4 Sink
In our design we have two sinks indicated Q1 Side output and Q2

Side output. Side output is a special Flink operator that will enable
the user to send a separate stream of events apart from the main out-
put stream. This enabled us to send benchmark events to both the
side outputs whenever we find that the batch has ended during the
event processing in Query 1 or Query 2 operators. The initial design
included directly reporting these benchmarks per symbol but due
to requirements we changed the reporting to per batch. Due to this
a custom counting window per batch sequence identifier needed to
be created. This counting window kept track of the symbols coming
per batch and when it hit the total number of symbols in the batch,
the entire batch of benchmark were sent using a single API call. The
advantages of this approach was reduced network calls and accu-
rate reporting of query data as well. The snippet below shows the 2
sinks that are defined. Both the sinks are keyed by the batch Id of the
result. The Global windows created are triggered using the custom
triggers defined by ResultQ1Trigger and ResultQ2Trigger for
each of the sinks. The triggered windows are processed by the cus-
tom window functions defined by ResultQ1ProcessWindow and
ResultQ2ProcessWindow respectively.

1 emaDataStream.getSideOutput(benchMarkQ1)

2 .keyBy(ResultQ1Wrapper :: getBatchSeqId)

3 .window(GlobalWindows.create ())

4 .trigger(new ResultQ1Trigger ())

5 .process(new ResultQ1ProcessWindow(benchmark))

6 .name("Q1 Benchmark SideOutput");

7

8 q2OutputStream.getSideOutput(benchMarkQ2)

9 .keyBy(ResultQ2Wrapper :: getBatchSeqId)

10 .window(GlobalWindows.create ())

11 .trigger(new ResultQ2Trigger ())

12 .process(new ResultQ2ProcessWindow(benchmark))

13 .name("Q2 Benchmark SideOutput");

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Emmanouil Kritharakis, Shengyao Luo, Vivek Unnikrishnan, Karan Vombatkere

Figure 2: The Grafana dashboard showing two plots for the selected symbol ALCLS_FR. The top plot shows the EMA 38 and
100 values while the below plot shows the number of cross over events for the symbol. The legend below each plot shows the
metrics from which the plot has been calculated.

3.5 Distributed Flink configuration
In order to ensure scalability of the solution, the operators needed

to be designed so that it can run on a distributed Flink cluster. There
were a few challenges faced for achieving this. The first is that few
of the classes provided for benchmarking are not serializable. The
second was that intermediate event size needed to be controlled
since larger events lead to increased network latency. For the first
problem, we decided to make sure every operator had its own copy
of the benchmarking client by initializing the same during the
creation of the operator. This ensured that the results published
were accurate and every operator can function individually without
any dependencies. For the second problem, we have gone over it
in detail in Section 5. We also ran multiple performance tests by
tuning Flink parameters including parallelism, number of task slots
and buffer timeout. The results of these tests are explained in detail
in Section 4.

3.6 Visualization
For the visualization, we decided to use Flink’s inbuilt metrics

registry to store the different values we are calculating during the
job. There are two metrics that are being recorded: EMA values for
each symbol and smoothing factor and the number of crossover
events for each symbol. The reporting of metrics can be enabled
or disabled based on the visualization flag in the code. The Flink’s
metrics system is an inbuilt registry which stores existing metrics
as well as enables addition of custom metrics. We have registered
3 gauges currently in Flink’s metrics registry: EMA value with
smoothing factor of 38 for each symbol, EMA value with smoothing
factor of 100 for each symbol and the number of crossover events
for each symbol. Separately Prometheus [4] and Grafana [3] were
setup in the master node. Prometheus is a time series database
which is used for storing and querying metrics, while Grafana is
a visualization tool that can be linked to multiple data sources to

create plots based on difference metrics. The metrics registry is
connected to Prometheus so that we can store the time series data
for every metric in Flink. Grafana is then used with Prometheus as
its data source so that results of various queries can be shown in a
dashboard as in Figure 2 The symbol can be selected from the drop
down provided in the dashboard and the time span can be adjusted
from the top right menu. Based on the selected symbol, Grafana
queries the metrics from Prometheus and displays the results.

4 RESULTS
We deploy our experiments on 3 virtual machines (VMs) pro-

vided by the challenge committee. Each VM consists of 8GB ram
memory, 4 core Intel Core Processor (Haswell, no TSX, IBRS) CPUs
and 16GB virtual storage system. Ubuntu 20.04, Java 11, Maven 3.8.5
and Apache Flink 1.14.3 were installed on all 3 VMs, thus giving us
a total of 12 CPU cores.

We evaluate our streaming architecture in terms of throughput
and latency. Throughput is defined as the average number of batch
responses per second from queries 1 and 2 to the GRPC server. We
measure latency per batch as the average time between a request
for a new batch and the submission of results to the GRPC server
for both queries.

We evaluate the performance of our streaming architecture using
the benchmarking platform provided by the DEBS 2022 challenge
committee. In particular, we evaluate our custom window architec-
ture, and compare it with Flink’s tumbling window as well as fine
tune the buffer timeout hyperparameter. We run both our custom
window architecture and the tumbling window solution on the
provided 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 dataset which consists of almost 60 million
event notifications [7]. We run each experiment 3 times and report
average results.

Detecting Trading Trends in Streaming Financial Data using Apache Flink DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Figure 3: End to End Latency per Batch Comparison Between
Custom and Tumbling Window

4.1 Effect of parallelism on throughput and
latency

Identifying the parallelism of a distributed approach which max-
imizes the latency and throughput metrics plays an important role
to the end-to-end solution. Towards this direction, we investigate
how these measurements will be affected in our custom window
approach over multiple VMs configuring the total number of task
slots per virtual machine. In particular, we progressively increase
the number of task slots for each virtual machine and trace the
latency and throughput results. In this experiment, we keep the
parallelism of source and sink to 1 and set all the parallelism of all
the other operators to an increasing value from 3 to 18. In addition,
we compare the custom window throughput and latency with the
default tumbling window to measure metrics differences between
those two attempts. As it is easily observed by Figures 3 and 4,
the throughput and latency of our solution are optimized when
each working operator of the pipeline has a parallelism of 6. This
result makes sense intuitively, since having 4 CPUs per VM the
total number of threads we can adjust is 12 (3 VMs in total). The
individual operators except source and sink are 5, so if each one is
parallelized by 12 we notice CPU congestion and as an outcome,
the throughput results start to decrease for operator parallelism
options above 12. Following the same logic, we notice that operator
parallelism of 6 presents the best overall results in terms of latency
and throughput. We also observe that while both solutions provide
similar results on throughput, the custom window solution gives
us a significant reduction in latency, due to the more sophisticated
trigger-eviction scheme.

4.2 Exploring the effect of buffer timeout
Having decided which operator parallelism improves the most

both latency and throughput we moved towards fine tuning hyper-
parameters of Flink framework. One of the most impactful configu-
ration was buffer timeout. Therefore, we vary the buffer timeout
hyperparameter programmatically within Flink on our custom win-
dow solution, in an attempt to further improve our solution. Figure 5
shows that reducing the buffer timeout further helps decrease our

Figure 4: End to End Throughput per Batch Comparison
Between Custom and Tumbling Window

Figure 5: Fine tuning buffer timeout hyperparameter reduces
the total latency up to 2x from its default value (100ms to
10ms comparison).

latency by up to 2x. Flink uses a default buffer timeout of 100ms,
but we customize our solution to have a buffer timeout of 10ms.

5 LESSONS LEARNED
In this section, we would like to share how we addressed prob-

lems faced towards the solution of DEBS challenge. We believe that
Flink developers might find them useful working on future projects
embedded with GRPC servers.

Custom Windowing decreases latency up to 3x. The initial
implementation used Flink’s default windowing function. Since the
window gets triggered only when the event exceeds the watermark,
the batches that were completed within the window are closed only
when the window process function is triggered. This led to higher
latency numbers in all the experiments. By implementing a custom
window function, every event that comes in was checked individ-
ually and the batch was closed as soon as an end of batch event
was detected, thus lowering end-to-end latency of the application
as shown in Figure 3.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Emmanouil Kritharakis, Shengyao Luo, Vivek Unnikrishnan, Karan Vombatkere

Reducing size of intermediate objects increases throughput
and decreases latency by 10x. As stated in Flink’s "Data Types
and Serialization" documentation page [2], if the object does not
follow the prerequisites of being serializable, the object is treated
as a Generic type object and serialized using the Kyro Serializer in
Flink. This led to a larger object size lead to much higher transfer
times of the events between operators. By correcting the classes
used and making it simpler to serialize, we reduced the overall size
of intermediate objects by more than 90% leading to a dramatic
increase in throughput and decrease in latency.

Event generator parallelism boosts throughput up to 3x. Our
first design architectures were based on a single event generator
connecting the GRPC client with the source of the Flink frame-
work. In particular, we passed the events of an inspected batch
sequentially to Flink’s source operator. It was easily noticeable that
although the latency metrics were close to 1 minute (no other mi-
crobenchmarks configured) the throughput metrics had an upper
threshold of 15 batches per second. To address this problem, we
parallelize the event generators by passing the whole batch to the
Flink framework and delegate the work with a Flatmap operator
assigning one batch per worker. The final outcome of our design
choice leads to a 3x throughput gain.

Buffer timeout reduction decreases latency up to 2x. Fine-
tuning the microbenchmarks of the Flink framework lead to a 2
times latency improvement. As buffer timeout time, Flink devel-
opers define the maximum time frequency in milliseconds for the
flushing of the output buffers to the next operator. Decreasing this
hyperparameter, we pass the results at a faster rate to the next oper-
ator. As depicted in Figure 5, the progressive reduction of the initial
default value of 100ms up to 10ms lead to a halved latency time. It
should be mentioned that a further decrease of buffer timeout value
had a negative result in increasing the latency metric. Therefore, we
conclude that decreasing the timeout value further than a threshold
will not benefit performance.

6 CONCLUSION
In this paper, we present the design and implementation of a

customized, streaming Apache Flink application that detects trading
trends in financial data. As outlined by the 2022 DEBS challenge, it
first calculates the relevant EMA values, then identifies breakout
patterns, and finally submits financial advice (Buy/Sell) for each
symbol that has been subscribed to. Our solution includes a metrics
visualization element, runs on a distributed Flink cluster and was
tested for its throughput and latency on large amounts of streaming
data in real-time.

ACKNOWLEDGMENTS
We would like to thank professor Vasiliki Kalavri for her mentor-

ship and support throughout the project. Furthermore, Emmanouil
Kritharakis is supported by the Onassis Scholarship [Scholarship
ID: F ZR 030/1-2021/2022].

REFERENCES
[1] 2022. DEBS-22 Grand Challenge, Group-11 GitHub Source code. https://github.com/

kvombatkere/DEBS22-Group11
[2] 2022. Flink framework: Data Types & Serialization. https://nightlies.

apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/fault-
tolerance/serialization/types_serialization/

[3] 2022. Grafana: The open observability platform, Documentation. https://grafana.
com/docs

[4] 2022. Prometheus: Monitoring System & Time series Database, Documentation.
https://prometheus.io/docs

[5] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. Statemanagement in Apache Flink®: consistent stateful distributed
stream processing. Proceedings of the VLDB Endowment 10, 12 (2017), 1718–1729.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi, and
Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 36,
4 (2015).

[7] Sebastian Frischbier, Jawad Tahir, Christoph Doblander, Arne Hormann, Ruben
Mayer, and Hans-Arno Jacobsen. 2022. DEBS 2022 Grand Challenge Data Set:
Trading Data. https://doi.org/10.5281/zenodo.6382482

[8] Sebastian Frischbier, Jawad Tahir, Christoph Doblander, Arne Hormann, Ruben
Mayer, and Hans-Arno Jacobsen. 2022. The DEBS 2022 Grand Challenge: Detecting
Trading Trends in Financial Tick Data. In Proceedings of the 16th ACM International
Conference on Distributed and Event-Based Systems (DEBS ’22). Association for
Computing Machinery, New York, NY, USA.

[9] F. Hueske and V. Kalavri. 2019. Stream Processing with Apache Flink: Fundamen-
tals, Implementation, and Operation of Streaming Applications. O’Reilly Media,
Incorporated. https://books.google.com/books?id=64GHAQAACAAJ

https://github.com/kvombatkere/DEBS22-Group11
https://github.com/kvombatkere/DEBS22-Group11
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://grafana.com/docs
https://grafana.com/docs
https://prometheus.io/docs
https://doi.org/10.5281/zenodo.6382482
https://books.google.com/books?id=64GHAQAACAAJ

	Abstract
	1 Introduction
	2 Background
	2.1 Apache Flink
	2.2 Exponential Moving Average (EMA)
	2.3 Breakout patterns

	3 Design & Implementation
	3.1 Event generator
	3.2 Query 1
	3.3 Query 2
	3.4 Sink
	3.5 Distributed Flink configuration
	3.6 Visualization

	4 Results
	4.1 Effect of parallelism on throughput and latency
	4.2 Exploring the effect of buffer timeout

	5 Lessons Learned
	6 Conclusion
	Acknowledgments
	References

